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We investigated the effects of noise on periodic firing in the Hodgkin-Huxley nonlinear system. With mean
input current � as a bifurcation parameter, a bifurcation to repetitive spiking occurs at a critical value �c

�6.44. The firing behavior was studied as a function of the mean and variance of the input current, firstly with
initial resting conditions. Noise of a small amplitude can turn off the spiking for values of � close to �c, and
the number of spikes undergoes a minimum as a function of the noise level. The robustness of these phenom-
ena was confirmed by simulations with random initial conditions and with random time of commencement of
the noise. Furthermore, their generality was indicated by their occurrence when additive noise was replaced by
conductance-based noise. For long periods of observation, many frequent transitions may occur from spiking
to nonspiking activity when the noise is sufficiently strong. Explanations of the above phenomena are sought
in terms of the underlying bifurcation structure and the probabilities that noise shifts the process from the basin
of attraction of a stable limit cycle to that of a stable rest state. The waiting times for such transitions depend
strongly on the values of � and � and on the forms of the basins of attraction. The observed effects of noise
are expected to occur in diverse fields in systems with the same underlying dynamical structure.
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I. INTRODUCTION

Models for nerve cell activity often take the form of a
nonlinear system of differential equations �1�. The effects of
noise on such dynamical systems have been investigated
with many models and preparations �2–11�. In the majority
of cases, the effects have been facilitatory; that is, neurons
tend to fire more rapidly when their input processes have a
stochastic component �12–14�, even if the latter has zero
mean �15�. In some cases, there is a maximal response at a
particular noise level—a phenomenon called stochastic reso-
nance, which arises in several biological and other applica-
tions �16–22�. This may occur even when the input signal is
nonperiodic �23� or without external forcing �24�. Of interest
also is the phenomenon of coherence resonance �25,26�,
which has been studied for noise-induced firing in a
Hodgkin-Huxley model with Ornstein-Uhlenbeck synaptic
input �28�.

In recent articles �27,29,30�, we have reported and ana-
lyzed a case where noise, instead of having a facilitatory
effect, could inhibit the spiking activity of coupled pairs of
type 1 �31,32� model neurons, typified by quadratic integrate
and fire �or theta-neuron� model cells �1,32�. Here, we report
on the occurrence of the inhibitory effects of noise on spik-
ing activity in a single �type 2� Hodgkin-Huxley �HH� model
neuron. This model, which consists of a system of four ordi-
nary �or partial� differential equations, is basic in neurophys-
ics as it was the first to provide a theoretical framework for
action potentials or spikes. Thenceforth, it has often been
employed to ascertain the effects of noise on spiking activity
�5,13,26,28,41�.

The inputs we consider are both of the additive current
type, with fixed and random initial conditions, and the con-
ductance type. When the HH neuron is driven by mean cur-
rents close to the critical value for the onset of repetitive

firing, a small amount of noise can dramatically reduce the
firing activity. This phenomenon has indeed been hinted at
experimentally �33�. In addition, we have found that there is
a minimum in the firing rate at a particular noise amplitude.
Additionally, we briefly consider long-term periods of noise,
which, particularly when the noise amplitude is large, may
lead to rapid intermittent switching from spiking to nonspik-
ing states.

II. HH NEURONS WITH ADDITIVE NOISE

For a single space-clamped HH-model neuron �34� with
additive �or “current”� noise we have for the depolarization
V�t� at time t

dV =
1

C
��� + ḡKn4�VK − V� + ḡNam3h�VNa − V�

+ gL�VL − V��dt + �dW� , �1�

and for the dimensionless auxiliary variables

dn = ��n�1 − n� − �nn�dt �2�

dm = ��m�1 − m� − �mm�dt �3�

dh = ��h�1 − h� − �hh�dt , �4�

where C is the membrane capacitance per unit area, �, which
may depend on t, is the mean input current density, ḡK, ḡNa,
and gL are the maximal �constant� potassium, sodium, and
leak conductances per unit area with corresponding equilib-
rium potentials VK, VNa, and VL, respectively. The noise en-
ters as the derivative of a standard Wiener process W and has
amplitude �. The auxiliary variables are n�t�, the potassium
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activation, m�t�, the sodium activation, and h�t�, the sodium
inactivation. The coefficients in the differential equations for
the auxiliary variables as functions of depolarization are

�n�V� =
10 − V

100�e�10−V�/10 − 1�
, �n�V� =

1

8
e−V/80

�m�V� =
25 − V

10�e�25−V�/10 − 1�
, �m�V� = 4e−V/18

�h�V� =
7

100
e−V/20, �h�V� =

1

e�30−V�/10 + 1
.

These equations were used to simulate spike trains in a
single HH neuron with various values of the mean input
current � and for various values of the noise amplitude �.
The following standard parameter set was employed: C=1,
ḡK=36, ḡNa=120, gL=0.3, VK=−12, VNa=115, and VL=10.
The standard initial values are V�0�=0, n�0�=0.35, m�0�
=0.06, and h�0�=0.6. The units for these various quantities
are as follows: all times are in msec, all voltages are in mV,
all conductances per unit area are in mS /cm2, C is in
�F /cm2, � is in �A /cm2, and � is in �A msec1/2 /cm2.

III. RESULTS

When there is no noise and � is less than a critical value
�c, only subthreshold responses occur. However, as � in-
creases past the bifurcation value �c�6.44, a stable and un-
stable limit cycle appear so that repetitive periodic spiking
occurs. The simulation results we obtained showed clearly
that, for � in the vicinity of �c, the expected number of
spikes at first drops as the noise strength goes up and then
starts to increase. Figure 1 shows the voltage responses of
the model neuron in the current-driven case with various
noise levels for �=6.6. Without noise �top left record�, there

is a repetitive stream of output spikes, there being 8 in the
time period of duration 150 msec shown. As expected, add-
ing noise makes the output spike times irregular.

In this situation, extremely weak noise naturally has little
effect. Unexpectedly, slightly larger amounts can have a sig-
nificant inhibitory effect on the neuron’s spiking activity.
Moreover, moderate amounts of noise can actually stop the
spiking for a long time. In the examples shown, a noise level
of �=0.2 can halt the firing of action potentials after five
spikes and a somewhat larger noise level of �=0.5 here stops
the spiking after just one spike. When the noise level is
turned up to �=2, more spikes are emitted, there being 10 in
the trial shown. In Fig. 2 are shown plots of voltage versus
the potassium conductance variable, n. These phase-space
diagrams, which show the collapse of the limit cycle, are
useful in understanding the effects of noise of various levels,
as discussed below. Note that in all cases, if noise is present,
it is on at and after t=0, except in the case where as reported
in Fig. 7, it is switched on at a random time.

As it was at first surprising to encounter a minimum in the
number of spikes as noise level increased, we simulated the
firing activity for many values of � and � with results as
given in Figs. 3 and 4, where the mean spike counts are
shown for 200 trials, for ��6.4 �Fig. 3� and for ��6.44
�Fig. 4�, respectively. In Fig. 3 it can be seen for the smaller
values of the mean input current ��=4 to just less than 6� the
spike counts monotonically increase from zero as the noise
strength increases.

When however � gets close to and just above �c, small
noise has a noticeably depressing effect on the spiking and
there appears a minimum in the mean spike count as �
increases. As seen in Fig. 4, as � increases through �c,
the minimum at small values of � becomes more and more
pronounced. In each case when the noise is large enough,
beyond the minimum, the mean spike count increases
monotonically. However, as is to be expected, when � is
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FIG. 1. �Color online� Showing voltage trajectories with spikes
for a current-driven Hodgkin-Huxley model neuron. The mean in-
put current density � is 6.6 �A /cm2 and three examples of the
effects of noise of various magnitudes, �, are shown. Neuron is
initially at rest.
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FIG. 2. �Color online� Orbits of voltage versus potassium acti-
vation variable corresponding to the plots of Fig. 1. The limit cycle
is clearly seen in the noise-free case and the manner in which small
noise, �=0.2, and intermediate noise, �=0.5 may switch the orbit
away from the limit cycle. When �=2, the orbits are close to the
noise-free case.
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sufficiently large, the strong current overrides any effects that
noise may have, and the phenomenon eventually disappears.
Furthermore, there is a second bifurcation point, �c

� at which
the equilibrium point loses stability so that noise can no
longer drive the system from a limit cycle to a nonspiking
state. Simulations �not shown� confirm that the minimum is
rather shallow beyond �=8 and has disappeared at �=12. In
approximate terms, the drop in observed spike count �in 150
msec� with noise relative to the zero noise spike count jumps
from 0 to 48% near �=6.4, where only transient responses
occur without noise, and achieves a maximum of 67% near
�=�c.

To further illustrate these effects, we show in Fig. 5 the
mean spike numbers as a function of noise level over a 1000
msec time interval �100 trials� for three values of �, below
�c, just above �c, and considerably above �c. The minimum
near �=0.4 is clearly seen for �=6.8 and is even more pro-
nounced than it was for the case of a 150 msec observation
period. At the minimum, the mean number of spikes is only
about 6, representing a drop in mean spike count of 89%
relative to the noise-free case. For larger �, the mean number

of spikes increases at first quite sharply and then more
slowly as the noise level increases. For the larger value of the
mean input current, �=8, there are 62 spikes without noise
and a noticeable, yet less pronounced, minimum of value 48
in the mean number of spikes when � is just less than 1. For
�=5.5, before the onset of rhythmic spiking, the mean spike
count increases seemingly monotonically as the noise level
increases. Note that noise may destroy the regular nature of
the spike train when ���c.

A. Random initial conditions

The results described above, and particularly in Figs. 3–5,
were obtained with initial conditions, which were the same
on each trial, being the standard resting values for V, n, m,
and h. Note that by definition �34�, the rest state of a neuron
corresponds to depolarization, V=0. In order to see if the
observed phenomena were somehow a consequence of this
special choice of initial data, simulations were performed,
over a 500 msec interval, in which the values of V�0�, n�0�,
m�0�, and h�0� were chosen randomly. The value of V�0� was
uniformly distributed over �−10.5,103.3�, which gives the
approximate range of values of V during rhythmic spiking.
The values of n�0�, m�0�, and h�0� were uniformly distrib-
uted U�0,1� random variables. Three values of �, those as in
Figure 5, were employed, and 23 values of �, namely,
0.1, . . . ,1.0, 1.2, . . . ,2.0, 2.25, . . . ,4.0. The results are shown
in Fig. 6. Firstly, the mean spike counts over all �200� trials
are shown as the solid �blue� curve and crosses. However,
when initial data are chosen randomly, sometimes the initial
value falls in the basin of attraction Br of the stable equilib-
rium point and sometimes in that, Bs, of the limit cycle. Note
that both of these sets, Br and Bs, depend on �. The esti-
mated probabilities, based on 4600 cases, that the initial
point �V�0� ,n�0� ,m�0� ,h�0�� fell in Br, are 0.683, 0.161, and
0.067 for �=5.5, 6.8 and 8, respectively. The �red� dashed
curves and circles are the mean spike counts when the pro-

0 1 2 3 4 4

5

6

0

2

4

6

8

10

N

1/2 −2σ (µA msec cm )

µ (µA cm−2

MEAN SPIKE COUNTS FOR
VALUES OF µ ≤ 6.4

(

FIG. 3. �Color online� Mean numbers of spikes in an HH neuron
over a 150-msec period at various values of the mean input strength
�	�c and for various noise levels, �. Neuron initially at rest.
Based on 200 trials.
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FIG. 4. �Color online� Mean numbers of spikes in an HH neuron
over a 150-msec period at various values of the mean input strength
���c and for various noise levels, �. Neuron initially at rest.
Based on 200 trials.
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FIG. 5. �Color online� Mean numbers of spikes �100 trials� ver-
sus noise level in the single HH-model neuron for a 1000-msec time
interval with additive input current for three mean current strengths
as indicated. Neuron initially at rest.
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cess starts in Bs. It can be seen that the results for the mean
spike counts versus � parallel those for the case of a fixed
initial value set at the rest point whether all results are taken
into account or whether the results are restricted to those
cases where the initial point was in Bs. When only those
cases are taken into account where the initial point is in Br
then for all three values of �, the mean spike counts increase
monotonically from zero to soon approach the curves shown
in Fig. 6, in line with the noise-induced nature of these
spikes. Since, however, our main concern is with the effects
of noise on spiking which is already occurring, it may be
concluded that the inhibitory effect of noise illustrated in
Figs. 1–5 is robust for random initial conditions which fall
within Bs.

B. Switching on the noise at a random time

In the previous subsection, random initial data were em-
ployed, but on a few occasions, no spikes ensued in a 500
msec time period. In order to examine the effects of noise on
rhythmic spiking when the latter is already present, the noise
was switched on at a random time and the effects on spiking
activity noted. For the two values of �, 6.8, and 8.0, which
are greater than �c, and values of � in �0,2�, the HH neuron
model was driven by the deterministic component only up to
t=100 msec, by which time rhythmic spiking was estab-
lished. The noise was switched on at the random time TR
which was uniformly distributed on the interval �100, 120�,
which contains one complete period of spiking. Illustrative
spike trains are shown in Fig. 7�a�. The mean number N� �the
mean of a different random variable from previously� of
spikes in the interval �TR ,500� was determined and the re-

sults are shown in Fig. 7�b�. The dependence of N� on � for
each value of � parallels that obtained in Fig. 5 �fixed initial
data� and Fig. 6 �random initial data�. These results also add
credence to the robustness of the phenomena described
above.

C. Long-term stimulation

The above sets of results were based on either a 150, 500,
or 1000 msec time period. For longer observation periods,
when � is large, and � is in the appropriate range of values,
there is a greater chance of alternations between spiking and
nonspiking states. An example is shown in Fig. 8 for a
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FIG. 6. �Color online� Mean spike counts in a 500-msec time
interval for an HH neuron with random initial conditions for all four
components as described in the text. Here, the noise is additive
�current noise�. Values of mean input current � and noise amplitude
� as indicated. The solid �blue� lines and crosses are for the whole
sample of 200 initial values. The dashed �red� line and the circles
are the results only for those initial points that fell in the basin of
attraction of the limit cycle. Note that the time interval here is one
half of that in Figs. 5 and 10, resulting in about half as many spikes.
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tially at rest.
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current-driven HH neuron with �=7 and �=1 with an ob-
servation period of 3000 msec. In this case, there is a total of
104 spikes, which may be compared with 98 for the same
noise and �=6.5 and 80 for �=6. These and histograms of
the interspike interval for sample paths of the same duration
and other values of � and � are shown in Fig. 9. It can be
seen that for a noise level of �=0.3, the numbers of spikes
with �=6, 6.5, and 7 are only 1, 3, and 14, respectively. In
contrast, when �=0.1, there are 1, 6, and 172 spikes, respec-
tively.

IV. HH NEURONS WITH CONDUCTANCE-DRIVEN
INPUT

The above effects of noise on the firing of a single HH
neuron, including the occurrence of a minimum in the firing
activity, were obtained with an additive input current con-
taining both deterministic and random components. Such an
input, which approximates current being injected into a cell
by microelectrode in a laboratory preparation, is sometimes
referred to as current-driven �36�. In order to more closely
represent the synaptic input received by real neurons, we
include reversal potentials in the synaptic currents applied to
our model cell �35,36�. The differential equations for the
three auxiliary variables, n, m, and h are unaltered but there
are now two subsidiary equations for the excitatory and in-
hibitory conductances. The differential equation for V con-
tains a current Ic=gE�t��VE−V�+gI�t��VI−V� from excitatory
and inhibitory synaptic inputs

dV =
1

C
��ḡKn4�VK − V� + ḡNam3h�VNa − V�

+ gL�VL − V�� + Ic�t��dt �5�

dgE = −
1


E
�gE − ḡE�dt + �EdWE�t� �6�

dgI = −
1


I
�gI − ḡI�dt + �IdWI�t� . �7�

Here, gE�t� ,gI�t� are the excitatory and inhibitory conduc-
tances per unit area at time t; VE ,VI, assumed constant but
depending on local ion concentrations, are the excitatory and
inhibitory synaptic reversal potentials. Furthermore, 
E ,
I
are time constants, ḡE , ḡI are the steady state values of gE ,gI,
and WE ,WI are standard �independent� Wiener processes that
enter with amplitudes �E ,�I. The time constants are in msec
and the reversal potentials are in mV. The units for the con-
ductances per unit area are again mS /cm2 and for �E and �I
the units are mS msec1/2 /cm2.

In order to better compare the conductance noise case
with that of current noise, we considered excitatory input
conductances only. Note that in the diffusion approximation
for gE, when �E is large, there may be very occasional ex-
cursions of gE to slightly negative values. In the simulations,
however, gE was restricted to take on only non-negative val-
ues. The time constant was set at 
E=2 msec �36� and VE
=+80 mV relative to resting potential. The remaining pa-
rameters were chosen to enable a reasonable comparison, in
regard to firing behavior, with the additive current case. The
excitatory conductance ḡE, which led to repetitive spiking
without noise, was very close to a critical value ḡE,c
=0.112 mS /cm2. Fig. 10 shows the mean numbers of spikes
emitted over a 1000 msec time period at various noise levels
for three values of the equilibrium conductance, being less
than, approximately equal to, and greater than the critical
value for rhythmic spiking.

The bottom curve in Fig. 10 shows the effects of increas-
ing noise when ḡE=0.0906 mS /cm2, which is below the
critical value. With increasing noise levels, the average num-
ber of spikes gradually increases from 1 to about 50. When
ḡE=0.112 mS /cm2 and �=0, there are 55 spikes in a 1000
msec period. A small amount of noise causes a very large
decrease in spike rate and as the noise level increases there is
a well-defined minimum at about �E=0.004. For a larger

16 18 20
0

10

20

30

16 18 20
0

10

20

30

16 18 20
0

10

20

30

0 100

ISI (msec)
200

0

50

100

0 100 200
0

20

40

60

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

16 18 20
0

10

20

30

0 200 400
0

50

100

1 SPIKE 6 SPIKES 172 SPIKES

3 SPIKES

80 SPIKES 98 SPIKES

1 SPIKE 14 SPIKES

104 SPIKES

µ=6 µ=6.5 µ=7

σ=0.1

σ=0.3

σ=1.0

FREQU.

FIG. 9. �Color online� Interspike interval histograms for a 3000-
msec time period for three values of � with small, intermediate, and
large noise. The inter-spike intervals are in msec.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

10

20

30

40

50

60

70

N

σ
E

(mS/cm2/msec)

g
E
=0.1318

g
E
=0.112

g
E
=0.0906

CONDUCTANCE−DRIVEN

__

__

__

FIG. 10. �Color online� Mean numbers of spikes �100 trials�
versus noise level in the single HH-model neuron with
conductance-based input current for various conductance strengths
as indicated. Observation period 1000 msec. Neuron initially at rest.
For parameter values, see text.

INHIBITION AND MODULATION OF RHYTHMIC… PHYSICAL REVIEW E 80, 031907 �2009�

031907-5



mean stimulus level, ḡE=0.1318 mS /cm2, there are 63
spikes without noise. As the noise level increases, a distinct
minimum occurs at about �E=0.005. Thus, for both kinds of
input current, current-driven and conductance driven, a
noise-induced decrease in firing rate occurs for inputs with
means near the critical value for periodic spiking and a mini-
mum in spike counts develops as the noise amplitude grows.
It is remarkable in the case of conductance-based noise that
this inhibitory effect occurs even if the neuron is driven by a
purely excitatory synaptic input.

V. THEORY

A general qualitative understanding of the weak-noise-
induced modification of the periodic activity with appropri-
ate values of � can be sought in terms of dynamical systems
theory and stochastic analysis. The bifurcation structure of
the HH dynamical system �37,38� plays an important role in
these phenomena as described above. In the absence of
noise, regarding � as the bifurcation parameter, there are
three critical values which we denote in increasing order by
�c, �c

�, and �c
��. For �	�c the only stable solution is a rest

point, and in this region only a transient response, resem-
bling damped spikes, obtains. Note that in this discussion,
we refer to the stable equilibrium as a rest point, which is
not, except when �=0, the physiological rest point at which
V=0. At �c a stable and unstable limit cycle appear by a
saddle-node bifurcation. At �c

� the unstable limit cycle coa-
lesces with the rest point via a subcritical Hopf bifurcation,
destabilizing the rest point. In the range �c	�	�c

�, where a
stable rest point and a stable limit cycle coexist, noise or
other types of perturbation may drive the system from one
stable solution to the other, which is the basis of the inhibi-
tory effect of noise on rhythmic spiking. For ���c�, how-
ever, such transitions are not expected, but further analysis is
required. Eventually, at �=�c

�� the stable limit cycle coa-
lesces with the unstable rest point so that for ���c

�� only a
stable rest point remains.

Thus, there are two main factors underlying the behavior
of the stochastic system, namely, the tendency for noise to
drive a neuron to firing when it would not spike without
noise �when for the current-driven neuron �	�c� and the
ability of noise to drive the system to and from a �spiking�
limit cycle to the rest point when �c	�	�c

�.
Let x stand for the collection of backward variables for

�V ,n ,m ,h�. Assuming that � is in the range where the sys-
tem is bistable, the explanations of the different firing behav-
iors with increasing noise, and indeed the results of Figs. 3–7
and 10, lie in the probabilities psr�� ,� ;x� and prs�� ,� ;x�
that the process makes a transition from one to the other of
two basins of attraction, one being Bs, that of the limit cycle
and the other being Br for the rest state. Note that, strictly
speaking, the concept of basin of attraction here refers to the
system without noise, because when the dynamical system is
random, a clearly defined basin of attraction does not exist as
in the deterministic case. Furthermore, the sets Br and Bs
depend on �.

The probabilities psr�� ,�� and prs�� ,�� satisfy the partial
differential equations �39�

Lpsr = 0, x � Bs, �8�

Lprs = 0, x � Br, �9�

with psr=1 and prs=1 on the respective boundaries. Here, L
is the �linear� infinitesimal operator for the HH system. In the
case of current noise this operator was given in �40,41� and
for the conductance-based noise model it is given in the Ap-
pendix as L�. The solutions of these equations are easily seen
to be psr=1 and prs=1 throughout Bs and Br, respectively �cf.
�29��. That is, noise must eventually either turn off the spik-
ing or turn it on. However, the expected values fsr and frs of
the times of exit from Bs and Br, which can be obtained as
solutions of the partial differential equations

Lfsr = − 1, x � Bs, �10�

Lfrs = − 1, x � Br, �11�

with zero values on the boundaries of the respective regions,
have values which depend strongly on � and �.

At the critical value �c, the limit cycle emerges, and con-
sequently, for � close to and above �c, its basin of attraction
Bs �region of stability� is small compared to the one of the
rest state, Br. Also, there are dynamical effects as the speed
on the limit cycle is not uniform but varies, so that the escape
probability from Bs gets larger in regions that are traversed
slowly. Therefore, relatively small noise can move the trajec-
tory out of Bs, with only a small chance of moving back,
since the rest state has a wider basin of attraction. For leav-
ing the latter and moving back into Bs, a larger value of � is
needed. We have analyzed these effects in detail for a pair of
coupled type I neurons in �29�. Thus, whether and where the
trajectory when perturbed by noise leaves the basin of attrac-
tion of the limit cycle depends on the geometry of that basin
and on the dynamics along the limit cycle, and therefore on
the parameters controlling the dynamical system.

VI. DISCUSSION

We have seen that noise may terminate the spiking of a
regularly firing HH neuron with varying degrees of efficacy
when the mean input current � is in the interval ��c ,�c

��.
Furthermore, a minimum in spike count may occur as a func-
tion of noise level. We found that this was the case for fixed
�resting� initial conditions, for random initial conditions, and
for a random time of switching on the noise. The fact that
these results hold across a considerable variety of conditions,
including both current and conductance based noise in single
neurons, as demonstrated in the present paper, or in coupled
neurons, of both Hodgkin-Huxley type �to be reported else-
where� or of quadratic-integrate-and-fire type �27,29,30�,
lend support to the idea that these phenomena are of a gen-
eral nature and may have a significant role in nervous system
activity.

The above theory may be generalized to any system of
nonlinear ordinary differential equations in which a stable
limit cycle and a stable rest state coexist. Here, we have
discussed one of many such systems describing neural spik-
ing activity and we expect that the same principles will apply
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even in the case of complex neuronal geometry. Experiments
have already confirmed the inhibitory impact of noise on
regularly spiking squid axons �33� where the effect of small
noise on repetitive spiking was likened to a switch. Thus, one
aspect of the functional significance of these effects of noise
on rhythmic activity is that a very small disturbance can lead
to a drastic change in neuronal behavior.

Since dynamical systems in diverse fields exhibit stable
limit cycles coexisting with a stable rest state, we expect to
find that the phenomena of inhibition of cyclic, repetitive, or
rhythmic activity by noise and the occurrence of a minimum
with increasing noise for certain parameter values will have
widespread occurrence. Examples of fields where a stable
limit cycle coexists with a stable rest state occur in circadian
rhythms �44�, cardiology �45�, cell kinetics and tumor
growth �46,47�, oscillating neural networks �42,43�, as well
as in climatology, ecology, and astrophysics. We speculate
that the phenomena we have demonstrated for the classical
Hodgkin-Huxley model of spike generation can be analyzed
in terms of a generic dynamical structure for this kind of
system. Although the phenomena we have described are of

interest in themselves, as indeed is stochastic resonance, their
functional significance in neurobiological and other dynami-
cal systems remains to be fully explored. We will discuss
more fully the physiological significance of the above results
in a longer publication.

APPENDIX

Here, we give the infinitesimal operator L� for the
six-component stochastic process in the conductance-
based model. For notational convenience let �t ,y�
��t ,y1 ,y2 ,y3 ,y4 ,y5 ,y6���t ,V ,n ,m ,h ,gE ,gI� and let the
vector of corresponding backward variables be �s ,x�. Then
�see, for example, �39�� the backward Kolmogorov equation
for the transition probability density p�y , t ;x ,s� is

−
�p

�s
= L�p , �12�

where L� is the operator defined by

L�p =
1

C
�ḡK�VK − x1�x2

4 + ḡNa�VNa − x1�x3
3x4 + gL�VL − x1� + x5�VE − x1� + x6�VI − x1��

�p

�x1
+ ��n�x1��1 − x2� − �n�x1�x2�

�p

�x2

+ ��m�x1��1 − x3� − �m�x1�x3�
�p

�x3
+ ��h�x1��1 − x4� − �h�x1�x4�

�p

�x4
−

1


E
�x5 − ḡE�

�p

�x5
+

�E
2

2

�2p

�x5
2 −

1


I
�x6 − ḡI�

�p

�x6
+

�I
2

2

�2p

�x6
2 .
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